■ Description Hoval UltraSol® 2

Capteur plan

- Capteur plan vitré, à haut rendement, pour l'utilisation thermique de l'énergie solaire
- · Exécution verticale ou horizontale
- · Pour montage sur toit ou toit plat
- Cadre indéformable en profilés filés d'aluminium
- Verre trempé structuré (ESG) avec revêtement antireflet d'un côté
- Absorbeur pleine surface en aluminium avec revêtement hautement sélectif
- · Collecteur en cuivre avec 4 raccords
- Raccords et connecteurs de capteur avec bagues de serrage
- Isolation thermique en laine minérale (20 mm)
- Rendement annuel élevé (Wurtzbourg 50 °C) 1055 kWh/capteur

Livraison UltraSol® 2

max. 10 pièces debout par palette

Jeux de montage

- Montage sur toit parallèle et sur support (0°,20°,30°,45°) vertical et horizontal comprenant:
 - Châssis et hydraulique
 - Raccordement au toit

Châssis approprié aux raccordements au toit suivants:

- tuiles mécaniques
- tuiles plates
- ardoise, Eternit
- Montage sur toit plat avec socle en béton 45°
- pour capteurs horizontaux
- Montage de panneaux intégrés

Homologations	
Hoval	<i>Solarkeymark</i>
UltraSol® 2	011 - 7S2954 F

Gamme de modèles

Type	Montage	Surface de capteurs brute m²	Surface d'absorption / Surface d'ouverture m²
UltraSol® 2 V	vertical	2,53	2,33
UltraSol® 2 H	horizontal	2,53	2,33

Conduite solaire SL

- Tube ondulé en acier inoxydable pour circuits solaires, matériau 1.4404.
- Silencieux, résistant à la pression et étanche à la diffusion.
- Isolation des tubes en caoutchouc synthétique, exempt de CFC.
- Câble en silicone pour sonde de température intégré.
- Gaine de protection résistante aux intempéries, UV et exempte de PVC.
- Système de tubes sans fin pour un montage simple et rapide.

Livraison

• Conduites solaires complètement emballées.

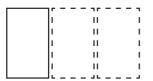
Jeu de raccords

- Jeu de raccords pour la liaison des capteurs plans Hoval UltraSol® 2 à un groupe d'armatures solaires ¾" (p. ex. SAG20) au moyen d'une conduite solaire.
- Vis de raccordement adaptées R 3/4"/Rp 3/4".

Livraison

 Jeu de raccords de capteurs, en emballage séparé.

Capteurs plans



No d'art.

Hoval UltraSol® 2

- Capteur plan à haut rendement pour systèmes solaires avec un mélange eauglycol comme agent caloporteur
- Verre trempé structuré avec revêtement antireflet d'un côté
- Absorbeur avec revêtement à haute sélectivité
- Rendement annuel élevé (Wurtzbourg 50 °C) 1055 kWh/capteur

Capteur plan - type de montage vertical

	Surface of	de capteurs	Nombre de	
UltraSol® 2	brute	absorbeur	capteurs	
type	m ²	m ²	pc.	
1V	2,53	2,33	1	6050 633
2V	5,06	4,66	2	6050 634
3V	7,59	6,99	3	6050 635
4V	10,12	9,32	4	6050 636
5V	12,65	11,65	5	6050 637
6V	15,18	13,98	6	6050 638
7V	17,71	16,31	7	6050 639
8V	20,24	18,64	8	6050 640
9V	22,77	20,97	9	6050 641
10V	25,30	23,30	10	6050 642

Capteur plan - type de montage horizontal

	Surface of	de capteurs	Nombre de	
UltraSol® 2	brute	absorbeur	capteurs	
type	m ²	m ²	pc.	
1H	2,53	2,33	1	6050
2H	5,06	4,66	2	6050
3H	7,59	6,99	3	6050 6
4H	10,12	9,32	4	6050 6
5H	12,65	11,65	5	6050 6
6H	15,18	13,98	6	6050 6
7H	17,71	16,31	7	6050 6
8H	20,24	18,64	8	6050 6
9H	22,77	20,97	9	6050 6
10H	25,30	23,30	10	6050 6

Jeux de montage voir pages suivantes

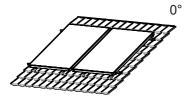
Fixations pour montage sur le toit vertical et horizontal 0°

Montage sur le toit

Tuiles métalliques et traversées de toiture pour tuiles de béton, d'argile et plates voir accessoires pour capteurs

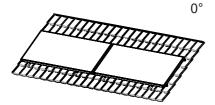
Jeu de fixation Montage sur le toit, vertical et horizontal 0°

Support et liaisons hydrauliques des capteurs pour montage sur le toit parallèle au toit


- Châssis convient pour
 - tuiles mécaniques
 - tuiles plates
- ardoise, Eternit
- Pente min. du toit 22°

Composé de:

- matériel de montage complet (sans raccordement au toit et raccordements de capteur)
- raccords hydrauliques des capteurs


Remarque

Raccordements de capteur et raccordement au toit capteur, voir les pages suivantes

pour nombre de capteurs verticaux par champ de capteurs

pc. Jeu de fixation	
1 AD0V-1	6051 243
2 AD0V-2	6051 244
3 AD0V-3	6051 245
4 AD0V-4	6051 246
5 AD0V-5	6051 247
6 AD0V-6	6051 248
7 AD0V-7	6051 249
8 AD0V-8	6051 250

pour nombre de capteurs horizontaux par champ de capteurs

pc.	Jeu de fixation	
1	AD0H-1	6051 251
2	AD0H-2	6051 252
3	AD0H-3	6051 253
4	AD0H-4	6051 254
5	AD0H-5	6051 255
6	AD0H-6	6051 256

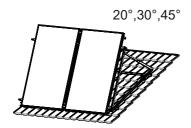
Fixations pour montage sur le toit vertical et horizontal 20°,30°,45°

Tuiles métalliques et traversées de toiture pour tuiles de béton, d'argile et plates voir accessoires pour capteurs

Support et liaisons hydrauliques des capteurs

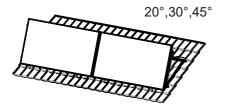
(sans raccordement au toit et raccordements de capteur)

Fixations pour montage sur le toit Montage sur le toit vertical et horizontal 20°, 30°, 45°


- Pour Hoval capteurs plans UltraSol® 2 pour le montage sur toit surélevé à 20°, 30°, 45°
- Châssis convient pour
 - tuiles mécaniques
 - tuiles plates
 - ardoise, Eternit

Composé de:

- matériel de montage complet (sans raccordement au toit et raccordements de capteur)
- raccords hydrauliques des capteurs
- angle d'élévation réglable 20°,30°,45°
- contreventement


Remarque

Raccordements de capteur et raccordement au toit capteur, voir les pages suivantes

pour nombre de capteurs verticaux par champ de capteurs

pc.	Jeu de fixation	
1	AD20-45V-1	6051 257
2	AD20-45V-2	6051 258
3	AD20-45V-3	6051 259
4	AD20-45V-4	6051 260
5	AD20-45V-5	6051 261
6	AD20-45V-6	6051 262
7	AD20-45V-7	6051 263
8	AD20-45V-8	6051 264

pour nombre de capteurs horizontaux par champ de capteurs

1 AD20-45H-1	6051 265
2 AD20-45H-2	6051 266
3 AD20-45H-3	6051 267
4 AD20-45H-4	6051 268
5 AD20-45H-5	6051 269
6 AD20-45H-6	6051 270

Elévation horizontale de 60°, voir les acces-

Raccordements au toit pour montage sur le toit

No d'art.

Détermination du nombre de jeux de raccordement au toit

voir le chapitre Planification/Tableaux 1 et 2

Jeu d'étriers de toit tuiles réglables

pour la fixation des profilés porteurs pour la fixation de l'UltraSol® 2 sur le toit

Composé de:

- 2 étriers de toit
- jeu de vis US2-SHS

Jeu d'étriers de toit tuiles forte charge

pour exigences statiques plus élevées pour la fixation des profilés porteurs pour la fixation de l'UltraSol® 2 sur le toit

Composé de:

- 2 étriers de toit forte charge
- jeu de vis US2-SHS

Plaque d'appui 2 mm

pour mise à niveau des étriers du toit

Plaque d'appui 3 mm

pour mise à niveau des étriers du toit

Set d'étriers de toit tuiles en queue de castor

pour fixation des profilés porteurs pour fixation sur toit UltraSol® 2 Comprenant:

- 2 étriers de toit
- jeu de vis US2-SHS
- set de montage vis à tête

rectangulaire

uniquement utilisable en association avec des tuiles métalliques.

Set d'étriers de toit tuiles en ardoise Eternit plat

pour fixation des profilés porteurs pour fixation sur toit UltraSol® 2 Comprenant:

- 2 étriers de toit
- jeu de vis US2-SHS
- set de montage vis à tête

rectangulaire

uniquement utilisable en association avec des tuiles métalliques.

Jeu d'étriers de toit Pince à tôle pliée

pour la fixation des profilés porteurs pour la fixation de l'UltraSol® 2 sur le toit Composé de:

- 2 pinces à tôle pliée
- jeu de montage boulon à tête

6037 731

6037 764

2061 367

2061 368

6037 767

6037 769

6037 770

Jeu de vis à double filetage isolé pour la fixation des profilés porteurs pour la fixation de l'UltraSol® 2 sur le toit

Composé de:

- 2 vis à double filetage M12
- 2 adaptateurs pour montage rapide M12 complet

Jeu de double vis à double filetage pour la fixation des profilés porteurs pour la fixation de l'UltraSol® 2 sur le toit

Composé de:

- 2 doubles vis à double filetage US-Dss
- jeu de montage boulon à tête

Jeu de vis Socle en béton

pour la fixation des profilés porteurs pour la fixation de l'Ultrasol® 2 sur le toit

Composé de:

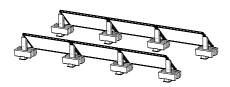
- 2 tiges filetées M10x150
- 2 adaptateurs pour montage rapide M10 complet

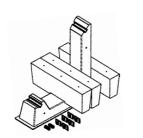
6037 771

6037 772

6037 775

Tuiles métalliques et passages de toit pour tuiles en béton, argile et plates


4 111 4 14 14		
etalliques et passages de toit es en béton, argile et plates		
	Tuile métallique, type béton pour le remplacement d'une tuile flamande en béton (p. ex. tuile rhénane) exécution galvanisée	2057 258
	Passage de toit, type béton pour le passage de conduites (1 conduite) à travers la couverture d'une tuile flamande en béton (p. ex. tuile rhénane) exécution galvanisée, 2 pièces	2057 259
	Tuile métallique, type argile 260 pour le remplacement de la tuile de toit (convient pour la majeure partie des tuiles en argile; p. ex. tuiles coulissantes) exécution galvanisée	2057 260
	Tuile métallique, type tuile plate pour le remplacement de la tuile de toit (p. ex. tuiles plates) exécution galvanisée	2057 262
	Passage de toit, type argile 260 pour le passage de conduites (1 conduite) à travers la couverture (p. ex. tuiles coulissantes et plates) exécution galvanisée, 2 pièces	2057 261
	Tuile métallique, type ardoise pour la protection de la tuile de toit (p. ex. plaques en Eternit, plaques en ardoise) exécution galvanisée	2057 264
	Passage de toit, type ardoise pour le passage de conduites (1 conduite) à travers la couverture (p. ex. plaques en Eternit, plaques en ardoise)	2057 265


exécution galvanisée, 2 pièces

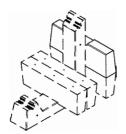
Jeux de montage Montage sur toit plat avec socle en béton côte à côte, horizontal

Montage sur toit plat avec socle en béton

Toit plat - socle en béton 45°, horizontal

- Pour capteurs plans Hoval UltraSol® 2 H
- Pour montage sur toit plat à 45°
- Avec socle en béton

Composé de:


- socle en béton en 2 parties (env. 92 kg)
 y c. 3 poids supplémentaires (env. 50 kg chacun) poids total: env. 242 kg
- natte de protection avec cache en aluminium
- matériel de montage complet (sans raccordements de capteur)
- raccords hydrauliques des capteurs

Remarque

Raccordements de capteur, voir les pages suivantes

Pour nombre de capteurs par champ de capteurs pc.	Jeu de montage	
1	FDBS45H-1	6051 271
2	FDBS45H-2	6051 272
3	FDBS45H-3	6051 273
4	FDBS45H-4	6051 274
5	FDBS45H-5	6051 275
6	FDBS45H-6	6051 276
7	FDBS45H-7	6051 277
8	FDBS45H-8	6051 278

Autres inclinaisons du socle sur demande

Poids supplémentaire pour socle en béton

pour capteur plan UltraSol® 2 H
Pour augmenter le poids de charge dans
les régions avec de grandes charges de
vent ou pour les bâtiments hauts.
Avec 3 douilles filetées M8
Surface d'installation L/I: 200/100 env.
L/I/H: 740/130/250

Poids supplémentaire 50 kg env.

Remarque

Le dimensionnement de la charge (charge admissible de toiture, due au vent, à la neige, etc.) pour le cas d'application respectif doit être sélectionné selon les indications de planification et vérifié par un spécialiste en statique/ingénieur du bâtiment.

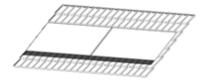
2075 124

Jeux de montage Montage dans le toit

côte à côte, horizontal

Montage dans le toit

Dans le toit - côte à côte, horizontal


- Pour Hoval capteurs plans UltraSol® 2 H
- Pour montage dans le toit
- Garniture de tôle dans un toit en tuiles mécaniques ou plates
- Pente minimale du toit 25° (recouvrement de tôle)
- Sous-toiture étanche requise

Composé de:

- matériel de montage complet pour la fixation sur un lattage transversal (sans raccordements de capteur)
- raccords hydrauliques des capteurs
- recouvrement de tôle complet en aluminium, RAL 7016

Remarque

Raccordements de capteur, voir les pages suivantes

Pour nombre de capteurs par champ de capteurs

pc.	Jeu de montage	
1	IDNH-1	6051 287
2	IDNH-2	6051 288
3	IDNH-3	6051 289
4	IDNH-4	6051 290
5	IDNH-5	6051 291
6	IDNH-6	6051 292

Conduites solaires

No d'art.

Tube ondulé en acier inoxydable pour circuits solaires, matériau 1.4404, complètement isolé. Câble en silicone pour sonde de température intégré.

Gaine de protection résistante aux intempéries, UV et exempte de PVC.

Conduite sola type	ire Largeur de tube	Longueur m	_
SL 1515	DN 15	15	2054 140
SL 1520	DN 15	20	2054 141
SL 1525	DN 15	25	2054 142
SL 2015	DN 20	15	2054 143
SL 2020	DN 20	20	2054 154
SL 2025	DN 20	25	2054 155
SL 2515	DN 25	15	2054 156
SL 2520	DN 25	20	2054 157
SL 2525	DN 25	25	2054 158

Jeux individuels hydraulique

Set de base hydraulique GS 18

pour le raccordement hydraulique d'un champ de capteurs avec tube ondulé en inox.

Composé de:

- 2 raccords coudés 90°,
- 1 bouchon de purge
- 1 bouchon borgne

Raccords de capteur:

- tube rond Cu Ø 18 mm

Taille de la conduite solaire

DN 15	6051 315
DN 20	6051 316
DN 25	6051 317

Set de base hydraulique GS 18-3/4" FD

Set de base hydraulique GS 18-3/4"

pour le raccordement hydraulique d'un champ de capteurs au raccord à visser ¾" filetage extérieur à joint plat.

Composé de:

- 2 raccords coudés 90°,
- 1 bouchon de purge
- 1 bouchon borgne
- 2 joints plats

Raccords de capteur:

- tube rond Cu Ø 18 mm

Désignation	Fitting de raccordement	
FD90	90°	6051 314
FD	droit	6051 313

Jeu de raccordement, groupe d'armatures départ/retour

pour le raccordement des conduites solaires Hoval à un groupe d'armatures solaire 3/4" (p. ex. SAG 20) ou à une vanne d'équilibrage DN 20. Etanchéité métallique côté conduite solaire. Avec joint plat côté groupe d'armatures (PTFE, Téflon résistant jusqu'à 260 °C).

Dimension conduite solaire	Raccord à vis	
DN 15	R 3/4"	6026 411
DN 20	R ¾"	6026 412
DN 25	R 3/4"	6026 413

Set de branchement solaire dép/ret

pour con conduite solaire commune Hoval. à étanchéité métallique.

3 raccordements comprenant:

- 2 pièces en T

DN 15	6042 233
DN 20	6042 234
DN 25	6042 235

Raccord de liaison

pour le prolongement de la conduite solaire

Type

Jeu de raccord type WES DN 20

pour la liaison d'un champ de capteurs (avec équerres de raccordement) avec conduite posée par l'installateur.

2 tubes ondulés en acier inoxydable avec isolation thermique PE de 13 mm, y c. vis de raccordement 3/4" resp. écrou de raccordement en cuivre 22x1x100 mm,

L: 1000 mm

Jeu de raccord type WES DN 20

pour la liaison d'un champ de capteurs (avec équerres de raccordement) avec conduite posée par l'installateur.

2 tubes ondulés en acier inoxydable avec isolation thermique PE de 13 mm y c. vis de raccordement, 3/4" resp. écrou de raccordement en cuivre 22x1x100 mm,

L = 3000 mm

Vis de transition

pour jeu de raccord WES Raccord à bague de serrage ¾" filt. ext. adapté à la pièce terminale en cuivre 22 x 1 mm pour la suite du montage avec un tube en acier Prix pour 2 pièces 2054 163

2054 162

2062 006

Liaison hydraulique

pour distance entre champs de capteurs 30 cm max.

Composée de:

2 tubes ondulés DN 20 isolé L = 500 mm raccord 3/4" avec joint des deux côtés 2 équerres de raccordement 90° 3/4"

6051 202

No d'art.

Jeu d'extension hydraulique ESN

pour la liaison hydraulique des capteurs entre eux.

Composé de:

- 2 raccords de capteur élastiques avec bagues de serrage (compensateur) avec isolation

6051 318

Set d'extension hydraulique ESU-ID

pour liaison hydraulique de série de capteurs/rangées de capteurs superposés (dans le toit). Nombre max. de coudes:

- 1 par champ de capteurs

Nombre max. de capteurs:

- 4 par champ de capteurs

Composé de:

- 1 raccord coudé élastique 90° avec bagues de serrage Distance de l'axe de tuyau: 300 mm

- 2 bouchons borgnes

6051 319

Set de fermeture VS-US2

pour fermeture hydraulique d'un champ

- 1 bouchon de purge
- 1 bouchon borgne

- tube rond Cu ø 18 mm

6051 232

de capteurs.

- Raccords de capteur:

Set de raccordement AS-US2 18

pour le raccordement hydraulique d'un champ de capteurs avec tube ondulé en

Composé de:

- 2 raccords coudés 90°

Raccords de capteur:

- tube rond Cu ø 18 mm

Taille de la conduite solaire

DN 15	6051 322
DN 20	6051 323
DN 25	6051 324

Set de raccordement AS-US2 18-3/4" FD90

Set de raccordement AS-US2 18-3/4" FD

Set de raccordement AS-US2 18-3/4"

pour le raccordement hydraulique d'un champ de capteurs au raccord à visser 3/4" filetage extérieur ép.

Composé de:

- 2 raccords coudés
- 2 joints plats

Raccords de capteur:

- tube rond Cu ø 18 mm

Désignation	Fitting de raccordement	
FD90	90°	6051 321
FD	droit	6051 320

Vanne d'équilibrage TN

Comme vanne de régulation et d'arrêt avec affichage direct du débit volumique sur le bypass. Température de service max. 185 °C

Taille	Plage de mesure l/min	Raccordement Rp x Rp	kvs	
DN 20	2-12	3/4" X 3/4"	2,2	2038 034
DN 20	8-30	3/4" X 3/4"	5,0	2038 035
DN 25	10-40	1" x 1"	8,1	2038 036
DN 32	20-70	1¼" x 1¼"	17,0	2038 037

Accessoires

Mélange antigel prêt à l'emploi PowerCool DC 923-PXL

à base de propylèneglycol mélangé avec de l'eau déminéralisée avec protection contre la corrosion Sécurité antigel: jusqu'à -23 °C Contenu récipient en matière synthétique: 30 kg

Mélange antigel prêt à l'emploi Coolant HighSOL

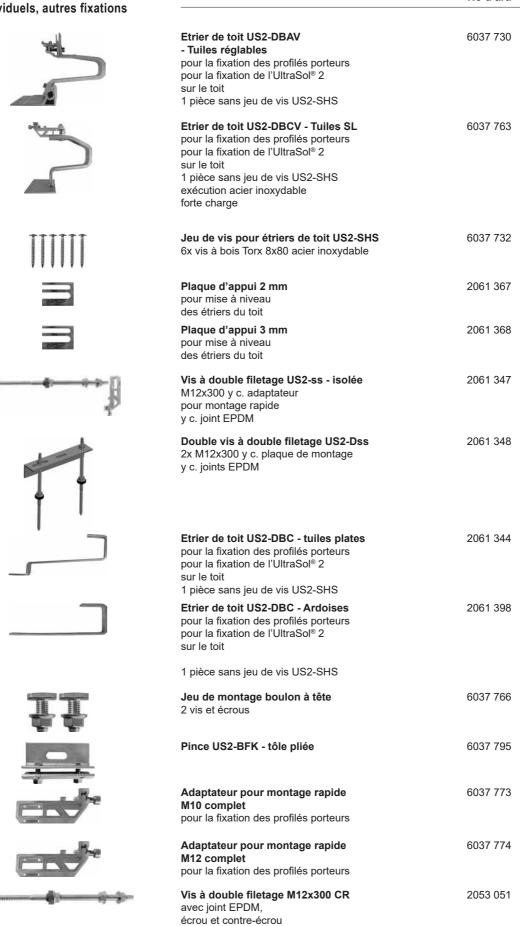
à base de glycoles supérieurs avec protection contre la corrosion Sécurité antigel: -24 °C Résistant à des températures jusqu'à +230 °C Capacité par bidon 19,4 l

Concentré antigel PowerCool DC 924-PXL

à base de propylèneglycol complètement miscible avec l'eau avec protection contre la corrosion Sécurité antigel: -20 °C avec proportion de mélange de 40 % Contenu récipient en matière synthétique: 10 kg

Réfractomètre portable

pour déterminer le point de formation de cristaux de glace de mélanges eau-propylèneglycol, eau-éthylèneglycol eau-éthanol Indice de réfraction nD20 de Coolant HighSOL 2054 403


2073 196

2009 987

2066 933

Jeux i	ndivid	luels,	autres	fixations
--------	--------	--------	--------	-----------

		No d'art.
	Profilé porteur ADKBV complet 1360 mm base courte verticale sur le toit	6050 655
	Profilé porteur ADLBV complet 1986 mm base longue verticale sur le toit	6050 656
	Profilé porteur ADKEV complet 1252 mm extension courte verticale sur le toit y c. raccord de profilés 45 complet	6050 657
	Profilé porteur ADLEV complet 1878 mm extension longue verticale sur le toit y c. raccord de profilés 45 complet	6050 658
	Profilé porteur ADBH complet 2260 mm base horizontale sur le toit	6050 659
	Profilé porteur ADEH complet 2152 mm extension horizontale sur le toit y c. raccord de profilés 45 complet	6050 660
	Raccord de profilés 45 complet y c. vis autobloquantes	6037 787
	Inclinaison 20, 30, 45° V cpl. exécution verticale avec 4 raccords en croix complets.	6050 661
	Inclinaison 20, 30, 45° H complet exécution horizontale y c. 4 raccords en croix complet	6037 790
	Inclinaison 60° H complet exécution horizontale y c. 4 raccords en croix complet	6042 143
and the second	Contreventement H/V complet pour inclinaison horizontale ou verticale	6037 762

Raccord en croix complet pour la fixation de l'inclinaison avec les profilés porteurs

6037 788

No d'art.

Set de montage 5-US2 ADGS Set de base pour fixation de capteurs 6050 662

Montage sur toit Composé de:

- 4 pinces d'extrémité pour capteur US2 cpl.
- 4 embouts 45 Hoval
- 2 sécurités anti-glissement

Set de montage 5-US2 ADES Set d'extension pour fixation de capteurs

Montage sur toit composé de:

- 2 pinces intercalaires pour capteurs US2 cpl.
- 2 sécurités anti-glissement

Set de montage 5-US2 BSGS
Set de base pour fixation de capteurs
Montage sur foit plat socie en béton

Montage sur toit plat socle en béton Composé de:

 4 pinces d'extrémité pour capteur US2 cpl. 6050 664

6050 663

Set de montage 5-US2 BSES Set d'extension pour fixation de capteurs

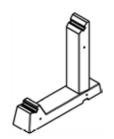
Montage sur toit plat socle en béton Composé de:

- 2 pinces intercalaires pour capteurs US2 cpl.

6050 665

Set de fixation 5-US2 IDKS Fixation de capteurs dans le toit

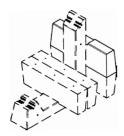
Composé de:


- 2 pinces de capteur US2
- 4 vis pour panneau aggloméré 5x35 TX25 Montage dans le toit UltraSol® 2 V:
- 6 pinces de capteur US2 par côté de capteurs (pinces intercalaire et d'extrémité)

Montage dans le toit UltraSol® 2 H:

 4 pinces de capteurs US2 par côté de capteurs (pinces intercalaire et d'extrémité) 6050 666

Jeux individuels socle en béton



Socle en béton 45° cpl.

pour capteur plan Hoval UltraSol® 2 H 2 pièces, inclinaison 45° avec tube de maintien profilé moulé pour fixation de capteurs avec goupille clip 6/40/33 galvanisée comme sécurité contre le soulèvement avec sécurité anti-rotation du support L/I/H: 930/190/865 mm Poids: 92 kg env.

No d'art.

6050 805

Poids supplémentaire pour socle en béton

pour capteur plan UltraSol® 2 H
Pour augmenter le poids de charge dans
les régions avec de grandes charges de
vent ou pour les bâtiments hauts.
Avec 3 douilles filetées M8
Surface d'installation L/I: 200/100 env.
L/I/H: 740/130/250
Poids supplémentaire 50 kg env.

2075 124

Natte de protection avec cache en aluminium

pour socle en béton pour la protection de la couverture du toit et la compensation d'inégalités L/l/h: 1000/260/6 mm 2061 579

Remarque

Le dimensionnement de la charge (charge admissible de toiture, due au vent, à la neige, etc.) pour le cas d'application respectif doit être sélectionné selon les indications de planification et vérifié par un spécialiste en statique/ingénieur du bâtiment.

Jeux individuels «Montage intégré» sans raccordements hydrauliques

No d'art.

6051 293

Remarque

Vous trouverez des exemples pour l'assemblage des variantes après les jeux individuels.

Set de base dans le toit 2-BLGS Set pour montage dans le toit de

1 capteur plan UltraSol® 2 V

Composé de:

- matériel de montage pour la fixation du capteur sur le lattage transversal
- butée pour un capteur
- faîtière pour un capteur avec support
- bavette de gouttière pour un capteur
- tôles latérales gauche et droite

Set de base dans le toit 2-BLGS 2VN 6051 294

Set pour montage dans le toit de 2 capteurs plans UltraSol® 2 V juxtaposés

Composé de:

- matériel de montage pour la fixation des capteurs sur le lattage transversal
- butée pour 2 capteurs
- faîtières pour 2 capteurs avec support
- bavettes de gouttière pour 2 capteurs
- tôles latérales gauche et droite
- tôle intermédiaire

Set d'extension dans le toit 2-BLES 1VN

Set de montage dans le toit d'un capteur plan supplémentaire UltraSol® 2 V

juxtaposé

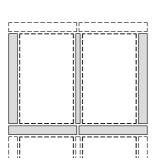
Composé de:

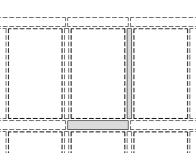
- matériel de montage pour la fixation du capteur sur le lattage transversal
- buttée de capteur centrale
- faîtière centrale avec support
- bavette de gouttière centrale
- tôle intermédiaire

Set d'extension dans le toit 2-BLES 2VU

Set de montage dans le toit de deux capteurs plans supplémentaires UltraSol® 2 V superposés

Composé de:

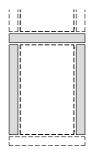

- matériel de montage pour la fixation des capteurs sur le lattage transversal
- entretoise
- tôles centrales avec raccord
- tôles latérales gauche et droite
- tôle intermédiaire


Set d'extension dans le toit 2-BLES 1VUN

Set de montage dans le toit d'un capteur plan supplémentaire UltraSol® 2 V superposé et juxtaposé

Composé de:

- matériel de montage pour la fixation des capteurs sur le lattage transversal
- entretoise
- tôles centrales avec raccord
- tôle intermédiaire



6051 296

6051 295

6051 297

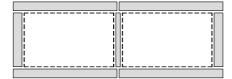
Set d'extension dans le toit 2-BLES 1VU

Set de montage dans le toit d'un capteur plan supplémentaire UltraSol® 2 V superposé

Composé de:

- matériel de montage pour la fixation du capteur sur le lattage transversal
- entretoise
- tôles centrales avec raccord
- tôle intermédiaire

No d'art.

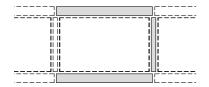


Set de base dans le toit 2-BLGS 1H

Set pour montage dans le toit de 1 capteur plan UltraSol® 2 H Composé de:

- matériel de montage pour la fixation du capteur sur le lattage transversal
- butée pour un capteur
- faîtière pour un capteur avec support
- bavette de gouttière pour un capteur
- tôles latérales gauche et droite

6051 299

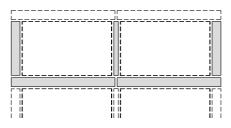

Set de base dans le toit 2-BLGS 2HN

Set pour montage dans le toit de 2 capteurs plans UltraSol® 2 H juxtaposés

Composé de:

- matériel de montage pour la fixation des capteurs sur le lattage transversal
- butée pour 2 capteurs
- faîtières pour 2 capteurs avec support
- bavettes de gouttière pour 2 capteurs
- tôles latérales gauche et droite
- tôle intermédiaire

6051 300


Set d'extension dans le toit 2-BLES 1HN

Set de montage dans le toit d'un capteur plan supplémentaire UltraSol® 2 H juxtaposé

Composé de:

- matériel de montage pour la fixation du capteur sur le lattage transversal
- buttée de capteur centrale
- faîtière centrale avec support
- bavette de gouttière centrale
- tôle intermédiaire

6051 301

Set d'extension dans le toit 2-BLES 2HU

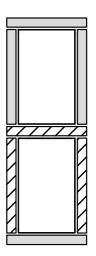
Set de montage dans le toit de deux capteurs plans supplémentaires UltraSol® 2 H superposés

Composé de:

- matériel de montage pour la fixation des capteurs sur le lattage transversal
- entretoise
- tôles centrales avec raccord
- tôles latérales gauche et droite
- tôle intermédiaire

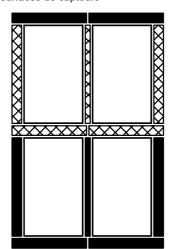
6051 302

Set d'extension dans le toit 2-BLES 1HUN Set de montage dans le toit d'un capteur plan supplémentaire UltraSol® 2 H superposé et juxtaposé Composé de: - matériel de montage pour la fixation des capteurs sur le lattage transversal - entretoise - tôles centrales avec raccord - tôle intermédiaire	6051 303
Set d'extension dans le toit 2-BLES 1HU Set de montage dans le toit d'un capteur plan supplémentaire UltraSol® 2 H superposé Composé de: - matériel de montage pour la fixation du capteur sur le lattage transversal - entretoise - tôles centrales avec raccord - tôle intermédiaire	6051 304
Tôle intermédiaire verticale Pièce verticale de recouvrement entre 2 capteurs	2075 478
Tôle intermédiaire horizontale Pièce horizontale de recouvrement entre 2 capteurs	2075 479
Bavette de gouttière V Bavette de gouttière verticale pour recouvrir le devant du capteur	6051 721
Bavette de gouttière H Bavette de gouttière horizontale pour recouvrir le devant du capteur	6051 722

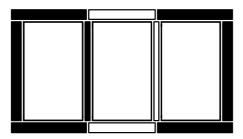


Prestations de service

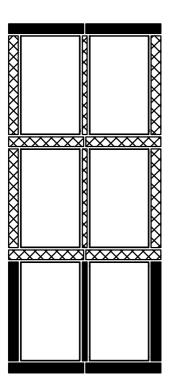
No d'art.



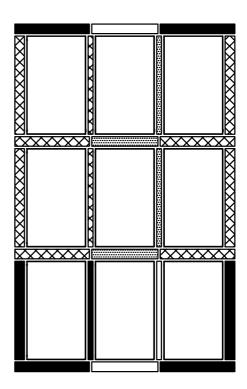
Exemples de jeux de montage intégrés individuels regroupés pour différentes surfaces de capteurs



- ☐ 1 x 6051 293 Jeu de base pour montage intégré BLGS 1V ☐ 1 x 6051 298 Jeu d'extension pour montage intégré BLES 1VU



- 1 x 6051 294 Jeu de base pour montage intégré BLGS 2VN
- 🖾 1 x 6051 296 Jeu d'extension pour montage intégré BLES 2VU


à commander:

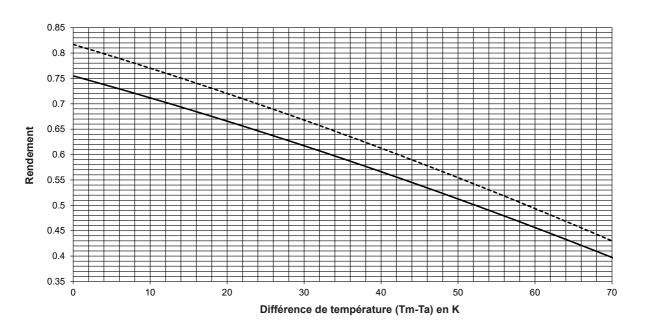
- 1 x 6051 294 Jeu de base pour montage intégré BLGS 2VN
- 1 x 6051 295 Jeu d'extension pour montage intégré BLES 1VN

à commander:

- 1 x 6051 294 Jeu de base pour montage intégré BLGS 2VN
- 2 x 6051 296 Jeu d'extension pour montage intégré BLES 2VU

à commander:

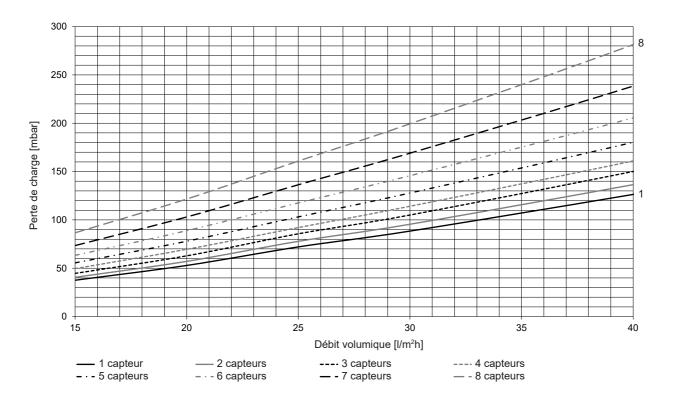
- 1 x 6051 294 Jeu de base pour montage intégré BLGS 2VN
- 1 x 6051 295 Jeu d'extension pour montage intégré BLES 1VN
- 2 x 6051 296 Jeu d'extension pour montage intégré BLES 2VU
- 2 x 6051 297 Jeu d'extension pour montage intégré BLES 1 VUN



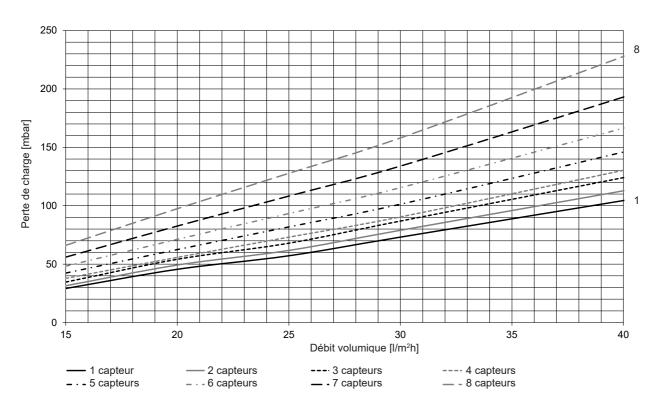
■ Caractéristiques techniques UltraSol® 2

Туре		Ultra V	aSol® 2 H
Rendement optique (surface d'ouverture) $\eta_{0,b}^*$ a_1^* a_2^*	% W/(m²K) W/(m²K²)	81,7 4,55 0,014	81,7 4,55 0,014
Rendement optique (surface brute) $\eta_{0,b}^{**}$ a_1^{**} a_2^{**}	% W/(m²K) W/(m²K²)	75,5 4,2 0,013	75,5 4,2 0,013
Surfaces de référence Surface brute Surface d'ouverture Surface d'absorbeur	m² m² m²	2,53 2,33 2,33	2,53 2,33 2,33
Capteur/cuve Type de construction Longueur, largeur, hauteur Matériau Poids à vide	kg	Voir tableau	és filés de dimensions ninium 43
 Absorbeur Revêtement de la surface absorbante Degré d'absorption solaire Degré d'émission hémisphérique Volume du fluide caloporteur Forme de l'écoulement Nombre de raccordements Exécution des raccordements 	% % 	95 5 1,5 Serpentemer Raccords à ba	lectif 95 5 1,7 nt du collecteur 4 gue de serrage - CU Ø 18 mm
Recouvrement en verre (transparent) Désignation du produit Facteur de transmission solaire Epaisseur	% mm	avec revêtement 94	npé structuré antireflet d'un côté 94 3,2
Isolation thermique Matériau Conductivité thermique Epaisseur Classe de résistance à la grêle	W/(m² K) mm	0,039 20	minérale 0,039 20 ın ø jusqu'à 30 mm)
Limites d'utilisation Température à l'arrêt normalisée Pression de service max. admissible Fluide caloporteur admissible Débit spécifique env. Débit nominal par capteur env. Inclinaison minimale du capteur Inclinaison maximale du capteur	° C bar I/(h m²) I/h	15-50 40-100	180 10 glycol/eau 15-50 40-100 22°

 ^{*} Rendement de pointe du capteur (η_b pour T_m* = 0), en rapport avec T_m*, basé sur l'intensité de rayonnement direct G_b (surface de référence: surface d'ouverture de 2,53 m²)
 ** Rendement de pointe du capteur (η_b pour T_m* = 0), en rapport avec T_m*, basé sur l'intensité de rayonnement direct G_b (surface de référence: surface brute de 2,53 m²)


■ Caractéristiques techniques Caractéristique de rendement UltraSol® 2

----- UltraSol® 2 (surface brute)
----- UltraSol® 2 (surface d'ouverture)


Tm = température moyenne du capteur Ta = Température ambiante

■ Caractéristiques techniques Perte de charge - UltraSol® 2, vertical Mélange glycol/eau - temp. 20 °C

Perte de charge - UltraSol® 2, horizontal

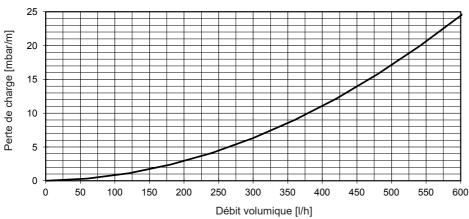
Mélange glycol/eau - temp. 20 °C

■ Caractéristiques techniques Conduite solaire SL

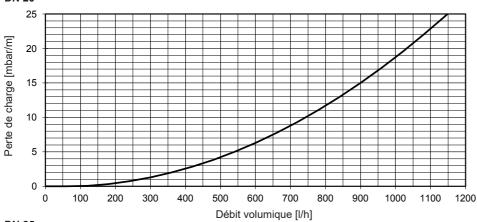
- · Tube ondulé en acier inoxydable, matériau 1.4404.
- Pression max. à 200 °C: 10 bar
- Température de service pour l'acier inoxydable 100-600 °C

٠,	Туре	Large nom. DN	eur du tube	Diamètre intérieur mm	Diamètre extérieur mm	Rayon de courbure min. mm	Pression de rupture bar	Poids g/m	Epaisseur de paroi mm	Conte- nance I/m
	SL 15	15	R 1/2"	16,6	21,4	25	44	140	0,18	0,28
	SL 20	20	R ¾"	20,6	26,2	30	36	195	0,18	0,42
	SL 25	25	R 1"	25,6	31,6	35	28	235	0,20	0,65

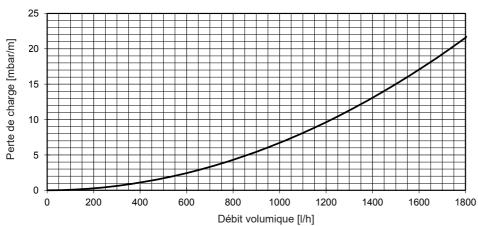
Туре	DN		B mm	H mm	Epaisseur d'isolation mm
SL 15 SL 20 SL 25	20	R ½" R ¾" R 1"	135	53 68 80	17 19 14

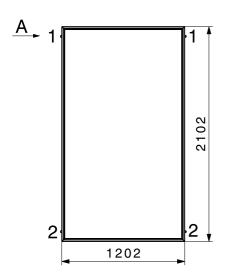

Isolation en mousse avec recouvrement PVC Tube ondulé DN 15, 20, 25

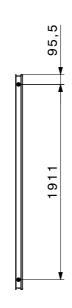
Câble en silicone pour sonde de température intégré

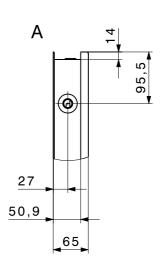

I В

Valeurs de perte de charge spécifique (par mètre de tube individuel) Mélange glycol/eau 40/60 % et 40 °C

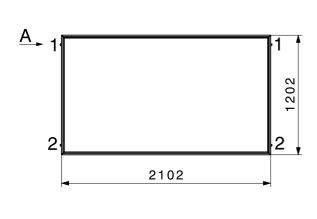


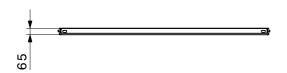

DN 25

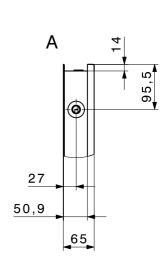



1 mbar = 100 Pa = 0,1 kPa

■ Dimensions UltraSol® 2 - vertical (Cotes en mm)

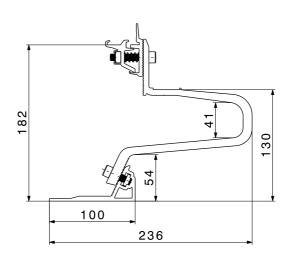


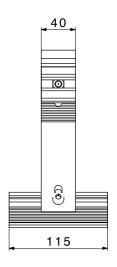



- 1 Sortie/départ capteur chaud; raccord tube rond CU Ø 18 mm
- 2 Entrée/retour capteur; raccord tube rond CU Ø 18 mm Sonde: position, voir planification
- Raccordement en alternance des deux côtés possible (Tichelmann)
- Raccordement unilatéral possible à gauche ou à droite (non Tichelmann)

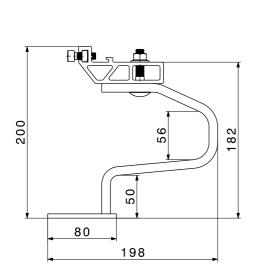
UltraSol® 2 - horizontal (Cotes en mm)

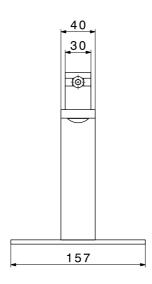
- 1 Sortie/départ capteur chaud; raccord tube rond CU Ø 18 mm
- 2 Entrée/retour capteur; raccord tube rond CU Ø 18 mm Sonde: position, voir planification
- Raccordement en alternance des deux côtés possible (Tichelmann)
- Raccordement unilatéral possible à gauche ou à droite (non Tichelmann)


■ Dimensions

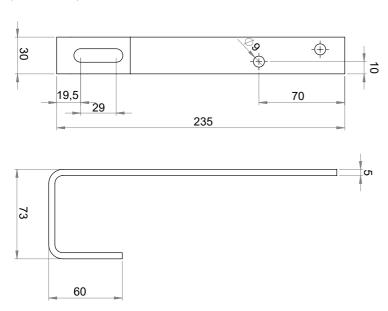

Etrier de toit - tuile dépl. - pour montage sur le toit (Cotes en mm)

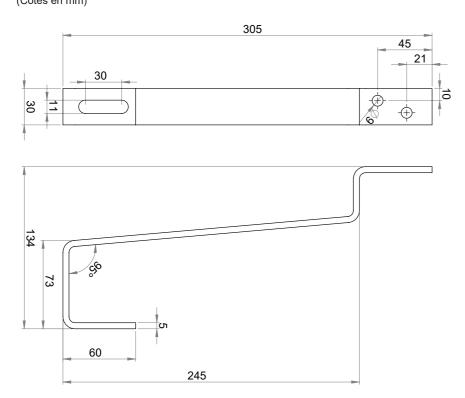
148


230


100

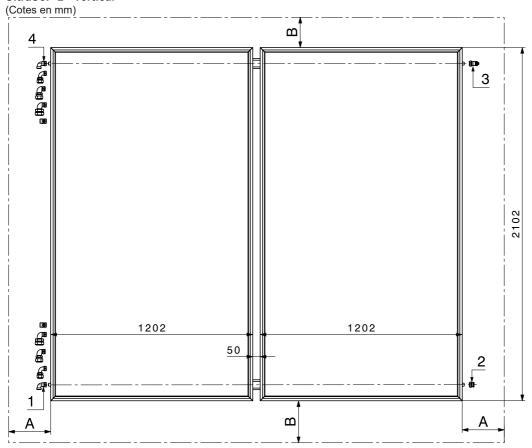
Etrier de toit - tuile ch. lourde pour montage sur le toit (Cotes en mm)




■ Dimensions

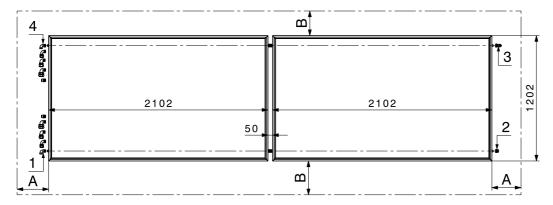
Etrier de toit ardoise - pour montage sur le toit

(Cotes en mm)



Etrier de toit tuiles plates - pour montage sur le toit (Cotes en mm)

■ Dimensions Encombrement


UltraSol® 2 - vertical

L'exécution inversée des raccords est aussi possible.

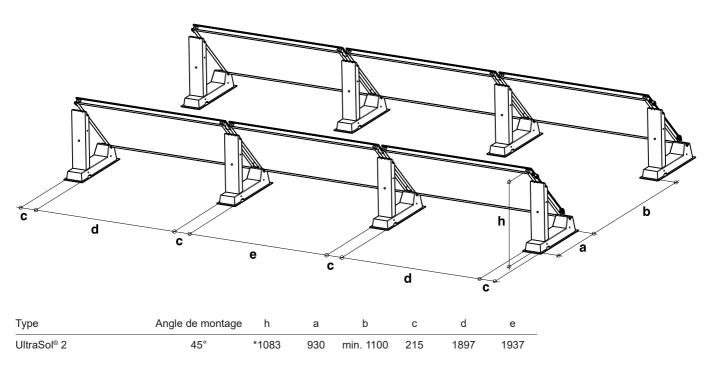
UltraSol® 2 - horizontal

(Cotes en mm)

L'exécution inversée des raccords est aussi possible.

- 1 Entrée/retour capteur raccord tube rond CU Ø 18 mm
- 2 Bouchon borgne
- 3 Bouchon borgne avec purgeur manuel intégré
- 4 Sortie/départ capteur chaud raccord tube rond CU Ø 18 mm Sélectionner une conduite courte Sonde: position, voir planification
- A Espace pour le montage et démontage d'équerres de raccordement et de capteurs 250 mm.

B en haut Au moins la longueur d'une tuile comme distance par rapport au pignon du toit!

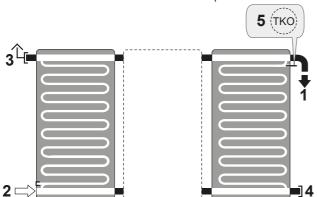

B en bas Au moins la longueur d'une tuile comme distance par rapport au bord du toit (gouttière).

Respectez également les prescriptions locales relatives à la sécurité liée à la neige (nombre de pare-neige).

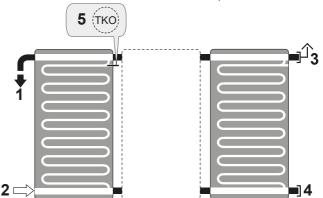
■ Dimensions Encombrement

Montage sur socle en béton

(Cotes en mm)



^{*} Avec natte de protection


Tuyauterie des rangées de capteurs Exemple de raccordement d'une rangée de capteurs

UltraSol[®] 2 V (capteur vertical)

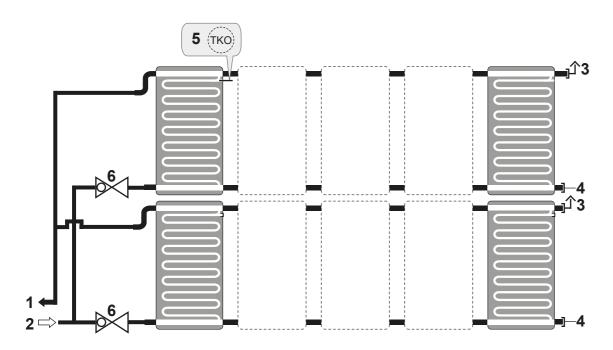
Variante de raccordement: Tichelmann, max. 8 capteurs/rangée L'exécution inversée des raccords est aussi possible.

Variante de raccordement: pas Tichelmann, max. 8 capteurs/rangée L'exécution inversée des raccords est aussi possible.

UltraSol® 2 H (capteur horizontal)

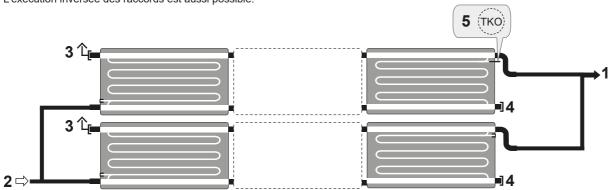
Variante de raccordement: Tichelmann, max. 8 capteurs/rangée L'exécution inversée des raccords est aussi possible.

Variante de raccordement: pas Tichelmann, max. 8 capteurs/rangée L'exécution inversée des raccords est aussi possible.



- Conduite du champ de capteurs (départ du capteur, chaud)
 Sélectionner un tracé court

- 4 Bouchon borgne
 - Douille plongeuse
 Sonde de régulation différentielle ou sonde solaire


UltraSol® 2 V (capteur vertical)

Variante de raccordement: pas Tichelmann, max. 8 capteurs/rangée L'exécution inversée des raccords est aussi possible.

UltraSol® 2 H (capteur horizontal)

Variante de raccordement: Tichelmann, max. 8 capteurs/rangée L'exécution inversée des raccords est aussi possible.

- Conduite du champ de capteurs (départ du capteur, chaud)
 Sélectionner un tracé court
- 2 Conduite du champ de capteurs (retour du capteur)
- 3 Bouchon borgne avec purgeur manuel intégré
- 4 Bouchon borgne
- 5 Douille plongeuse Sonde de régulation différentielle ou sonde solaire
- 6 Vanne de régulation

Aide au dimensionnement statique Les prescriptions et directives suivantes doivent être respectées:

- Normes et réglementations régionales en vigueur
- Le spécialiste chargé de l'installation est tenu de respecter les normes et prescriptions locales en vigueur correspondantes.
 Allemagne/Autriche:
- Les charges dues à la neige et au vent sont définies dans la norme DIN EN 1991 et l'annexe nationale correspondant.
- La capacité de charge des toitures des bâtiments est prescrite par la norme ÖNORM B 1991.
- ÖNORM M 7778 planification de montage et montage de capteurs solaires thermiques.
- Les réglementations autrichienne et allemande sont axées sur la norme européenne EN 1991-1-3. Elles sont applicables jusqu'à 1 500 m d'altitude. Les altitudes supérieures sont régulées par des annexes spéciales.
- La norme SIA 261 doit être appliquée en Suisse

Remarques générales sur la statique

- Le montage doit être effectué uniquement sur une surface de toit ou une structure porteuse présentant une capacité de charge suffisante. La capacité de charge statique du toit ou de la structure porteuse doit être impérativement vérifiée par un staticien local ayant le montage des capteurs
- Le contrôle de toute la construction des capteurs par le staticien selon DIN 1055, parties 4 et 5, est surtout nécessaire dans les régions enneigées ou les régions ayant des vitesses de vent élevées. Lors de l'opération, il faut tenir compte de toutes les particularités du lieu d'installation (foehn, effet Venturi, formation de tourbillons) entraînant un accroissement de la charge.

Installations montées sur le toit

- Pour les installations montées sur le toit, il convient de prêter une attention particulière à la qualité du bois de la structure en ce qui concerne la durabilité des raccords vissés destinés à la fixation des dispositifs de montage des capteurs. Le choix et le nombre de raccordements au toit doivent être adaptés aux charges dues au vent et à la neige sur site. Des chiffres concrets en ce qui concerne les charges dues au vent et à la neige ainsi que les hauteurs de bâtiments au-dessus du niveau de la mer doivent être demandés auprès des services régionaux correspondants.
- A charge maximale des ancres de toit, une déformation est incontournable en raison de la géométrie et un pliage de l'ancre de toit sur les tuiles est souvent inévitable. Il est donc recommandé d'utiliser des tuiles en tôle, en présence de charges dues à la neige et au vent élevées.
- Le nombre déterminant de jeux de raccordement au toit correspond au nombre minimum de points de fixation calculé pour le nombre prévu de capteurs solaires, sans tenir compte des particularités d'ancrage de la toiture spécifiques à l'objet et à la structure du bâtiment. L'introduction locale de la force a lieu par le biais des jeux de raccordement au toit. La transmission des forces à la structure du bâtiment par le biais du raccord vissé ne fait pas partie de ce calcul et doit être justifiée séparément.

Les capteurs ne doivent pas être montés

en bordure du toit pour éviter des forces d'aspiration inadmissibles exercées par le vent. Il convient de tenir compte des normes correspondantes à ce sujet.

Le bord supérieur du capteur ne doit pas dépasser le faîtage en présence d'un montage sur support. Les capteurs ne doivent pas être montés sous un dénivelé, afin d'éviter un surcroît de charge sur le champ de capteurs dû au soufflage ou au glissement de la neige provenant du toit situé au-dessus. Il faut vérifier la statique du toit si des pare-neige doivent être montés sur la partie supérieure de ce toit.

Sécurité des personnes

 Pour effectuer des travaux sur le toit, des installations de sécurité doivent obligatoirement être prévues afin d'assurer la sécurité des personnes. Pour les toits inclinés, il s'agit de crochets de sécurité et pour les toits plats, il s'agit de points d'ancrage ou de systèmes de câbles appropriés. Il faut respecter les prescriptions SUVA relatives aux travaux sur les toits.

Allemagne/Autriche:

 En Autriche, il faut respecter les prescriptions AUVA relatives aux travaux sur les toits, et en Allemagne, il faut respecter les prescriptions DGUV1.

Suisse:

 Il faut respecter les prescriptions SUVA relatives aux travaux sur les toits.

Raccordement sur le toit

Le **tableau 1** indique la charge due à la neige et au vent maximale en fonction de l'écartement des chevrons. Ces valeurs doivent être vérifiées en fonction de la situation sur site et calculées par un staticien/ingénieur en construction agréé. Elles ne sauraient donc faire l'objet d'une quelconque réclamation juridique.

Tableau 1 Ecartement des chevro 1000 mm						Ecartement des chevro 500-600 mm		
Charge due à la neige max. [kN/m²]	Charge due au vent max. [kN/m²]	Charge due à la neige max. [kN/m²]	Charge due au vent max. [kN/m²]	Charge due à la neige max. [kN/m²]	Charge due au vent max. [kN/m²]	Charge due à la neige max. [kN/m²]	Charge due au vent max. [kN/m²]	
1,0	0,6 non ac	1,0 Imissible	0,7	1,3 1,2	0,7 0,7	1,0 1,0	0,7 0,7	
1,0	0,5 non ac	0,5 Imissible	0,5	1,1 1,0	0,7 0,7	0,7 0,7	0,7 0,7	
1,0	1,0 non ad	1,4 Imissible	1,0	2,3 1.7	1 0.8	2,8 2.0	1,0 0,8	
1,8	1,0	0,8	1,0	1,8 1,5	1 0,8	2,0 1,5	1,0 0,8	
				1,1 0,8	0,7 0,7	1,0 0,9	0,7 0,7	
				0,2 0	0,7 0,6	0,1 0,1	0,7 0,7	
				0,6 0,6	0,7 0,7	0,6 0,6	0,7 0,7	
	1000 Charge due à la neige max. [kN/m²] 1,0 1,0 1,0	Charge due à la neige max. [kN/m²] 1,0 0,6 non ad 1,0 1,0 1,0 non ad 1,8 1,0 non ad non ad non ad non ad non ad non ad	1000 mm 900	Charge due Charge due Charge due au vent max. [kN/m²] [kN/m²]	The state of the properties of	1000 mm 900 mm 700-800 mm Charge due à la neige max. [kN/m²] Charge due au vent max. [T000 mm 900 mm 700-800 mm 500-60 Charge due à la neige max. a la neige max. [kN/m²] Charge due la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Charge due au vent max. a la neige max. [kN/m²] Ala neige max. [kN/m²] A	

Le **tableau 2** présente le nombre minimum de jeux de raccordement au toit calculé pour le nombre prévu de capteurs solaires, sans tenir compte des particularités d'ancrage de la toiture spécifiques à l'objet et à la structure du bâtiment. Ces valeurs doivent être vérifiées en fonction de la situation sur site et de l'état du toit et calculées par un staticien/ingénieur en construction agréé. Elles ne sauraient donc faire l'objet d'une quelconque réclamation juridique.

Dilatation longitudinale

Il faut tenir compte de la dilatation longitudinale des profilés en raison de la grande différence de température entre l'été et l'hiver.
Une séparation des profilés porteurs (4 cm min.) doit avoir lieu tous les 12 m. Il est ainsi possible de placer en une rangée jusqu'à 8 capteurs verticaux, respectivement 6 horizontaux. La distance entre les champs de capteurs est de 10 cm min.

Tableau 2: Nombre minimal de jeux de raccordement au toit (1 jeu = 2 points de fixation)

UltraSol® 2 V								
	1	2	3	4	5	6	7	8
Ecartement des chevrons 1000 mm	2	3	4	5	7	8	9	10
Ecartement des chevrons 900 mm	2	3	5	6	7	9	10	12
Ecartement des chevrons 800 mm	2	4	5	7	8	10	12	13
Ecartement des chevrons 700 mm	2	4	6	8	9	11	13	15
Ecartement des chevrons 600 mm	2	5	7	9	11	13	15	17
Ecartement des chevrons 500 mm	3	6	8	11	13	16	18	21
UltraSol® 2 H		Nor	nbre d	e capte	eurs			
UltraSol® 2 H	1	Nor 2	nbre d 3	e capte 4	eurs 5	6		
UltraSol® 2 H Ecartement des chevrons 1000 mm	1					6		
		2		4	5		-	
Ecartement des chevrons 1000 mm	3	2 5	3	10	5	14		
Ecartement des chevrons 1000 mm Ecartement des chevrons 900 mm	3	2 5 5	7 7	10 9	12 11	14 13		
Ecartement des chevrons 1000 mm Ecartement des chevrons 900 mm Ecartement des chevrons 800 mm	3 3 2	5 5 4	7 7 6	10 9 7	12 11 8	14 13 10		

■ Planification Charge due à la neige

Exemple de détermination de la charge de neige sur le capteur en fonction de l'inclinaison du capteur:

CH-7000 Coire, hauteur de 594 m

Détermination de la valeur caractéristique de la charge de neige Sk [kN/m²] selon SIA 261 Par exemple: https://www.dlubal.com/de/schnee-wind-erdbeben-lastzonen/schnee-sia-261.html Pour CH-7000 Coire, la charge de neige caractéristique est estimée à Sk = 2,46 kN/m².

2. Détermination de la charge de neige sur le capteur en fonction de l'inclinaison du toit (α) .

Raisonnement:

α ≤ 30°: Sk(toit) = Sk(sol) * 0,8

 $30^{\circ} < \alpha \le 60^{\circ}$: Sk(toit) = Sk(sol) * [0,8 * (60° - α) / 30°] $\alpha > 60^{\circ}$: Sk(toit) = 0 kN/ m^2

Pour une inclinaison du capteur de 20°: 2,46 kN/m² * 0,8 = 1,97 kN/m² Pour une inclinaison du capteur de 30°: 2,46 kN/m² * 0,8 = 1,97 kN/m²

Pour une inclinaison du capteur de 35°: 2,46 kN/m² * [0,8 * (60°-35°)/30°] = 1,64 kN/m² Pour une inclinaison du capteur de 45°: 2,46 kN/m² * [0,8 * (60°-45°)/30°] = 0,98 kN/m²Pour une inclinaison du capteur de 60°: $2,46 \text{ kN/m}^2 * [0,8 * (60°-60°)/30°] = 0 \text{ kN/m}^2$

Valeur caractéristique de la charge de neige			1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2	3,4	3,6	3,8	4,0	4,2	4,4	4,6	4,8	5,0
SK [K	N/m²] selon SIA 261:	0.0	4.0	4.4	4.0	4.4	4.0	4.0	4.0	0.4	0.0	0.4	0.0	0.7	0.0	0.0	0.0	0.4	0.5	0 7	0.0	4.0
	Pour une inclinaison du capteur infé-	0,8	1,0	1,1	1,3	1,4	1,6	1,8	1,9	2,1	2,2	2,4	2,6	2,7	2,9	3,0	3,2	3,4	3,5	3,7	3,8	4,0
<u>o</u>	rieure à 30°:																					
	Pour une inclinaison du capteur de 30°:				1,3	1,4		1,8	1,9	2,1	2,2	2,4	2,6	2,7	2,9	3,0	3,2	3,4	3,5	3,7	3,8	4,0
l o	Pour une inclinaison du capteur de 35°:	0,7	0,8	0,9	1,1	1,2	1,3	1,5	1,6	1,7	1,9	2,0	2,1	2,3	2,4	2,5	2,7	2,8	2,9	3,1	3,2	3,3
eg a	Pour une inclinaison du capteur de 40°:	0,5	0,6	0,7	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,5	2,6	2,7
ne pte	Pour une inclinaison du capteur de 45°:	0,4	0,5	0,6	0,6	0,7	0,8	0,9	1,0	1,0	1,1	1,2	1,3	1,4	1,4	1,5	1,6	1,7	1,8	1,8	1,9	2,0
de	Pour une inclinaison du capteur de 50°:	0,3	0,3	0,4	0,4	0,5	0,5	0,6	0,6	0,7	0,7	0,8	0,9	0,9	1,0	1,0	1,1	1,1	1,2	1,2	1,3	1,3
rge	Pour une inclinaison du capteur de 55°:	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,5	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,7
Chal	Pour une inclinaison du capteur de 60°:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
O	Pour une inclinaison du capteur supé-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	rieure à 60°:																					

En utilisant un profilé de support supplémentaire (3 profilés de support) comme support de base et comme support de capteur, les valeurs du tableau 1 Raccordement sur le toit peuvent être augmentées de 40 %, jusqu'à atteindre max. 4,1 kN/m².

Installations sur toit plat Calcul de la résistance au vent selon SIA 261 pour des installations autoportantes sur toit plat

En général, on utilise, pour le calcul détaillé de la charge de vent, le calcul selon la norme SIA 261. La présente recommandation doit couvrir les cas standard et faciliter la gestion dans une utilisation quotidienne. Cette recommandation ne dégage toutefois pas l'instance de planification de sa responsabilité de considérer précisément les conditions locales et de réaliser un calcul détaillé par un spécialiste agréé (staticien/ingénieur en construction). Il n'est donc pas possible d'avoir recours à une réclamation juridique.

Les points suivants sont déterminants pour calculer la charge de vent:

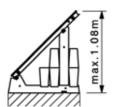

- Inclinaison du capteur
- Zone de pression dynamique/zone de vent
- Catégorie de terrain/situation géographique
- Hauteur du bâtiment à partir du terrain
- Dimensions/forme du bâtiment
- Hauteur de la bordure du toit (acrotère)
- Distance entre les capteurs et la bordure du toit
- Nombre de capteurs par rangée

Diagramme des pressions dynamiques selon SIA 261

Tout comme dans les normes internationales, une pression dynamique est également définie en Suisse. Elle constitue la base du calcul de la charge de surface du vent sur les façades. Cette valeur est comprise, selon le lieu en Suisse, entre 0,9 kN/m² et 3,3 kN/m². La norme SIA 261 contient une carte de la charge du vent et des pressions dynamiques associées pour les différentes régions.

Niveaux de sécurité pour la fixation et conditions d'installation

Selon la hauteur du bâtiment et la situation, il convient d'accroître encore davantage la sécurité de l'installation. Les entretoises doivent être réalisées à l'aide de rails stables ou à l'aide de câbles en acier.

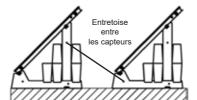
Niveau de sécurité 1

 Augmentation du poids propre par le nombre de poids supplémentaires

Des filetages M8 ont été noyés sur le côté du socle en béton pour l'entretoise des rangées de capteurs. Plus le bâtiment est exposé et esseulé, plus ont peut s'attendre à des charges du vent importantes. Dans les zones urbaines, les bâtiments sont souvent protégés du vent par les bâtiments voisins.

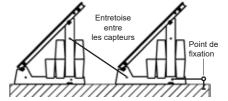
Exigences minimales - Nombre de poids supplémentaires

Le tableau 3 illustre les poids supplémentaires pour le système de socle en béton UltraSol® 2. Les indications du tableau se rapportent uniquement aux situations délimitées. Ces valeurs ne s'appliquent pas à toutes les situations et doivent être vérifiées et dimensionnées en fonction de la situation locale. Aucune revendication légale ne saurait ainsi être recevable. Les valeurs effectives doivent être contrôlées et interprétées avant l'exécution, avec un calcul de la charge de vent selon SIA 261.


Un haubanage supplémentaire est recommandé à une hauteur totale de plus de 10 m (niveau de sécurité 2 ou 3). Etant donné que les capteurs peuvent basculer en présente d'une charge de vent accrue, il es notamment important renforcer la rangée de capteurs exposée au vent.

La valeur de référence de la pression dynamique correspond à la vitesse de pointe (rafales de quelques secondes). Sa période de récurrence est de 50 ans. Pour les ouvrages situés en des lieux présentant des conditions de vent exceptionnelles, par exemple au niveau de sommets ou de crêtes, il convient d'envisager une rehausse de ces valeurs.

Tableau 3: Exigences minimales - Nombre de poids supplémentaires


Pression	Vites		Nombre de UltraSol® 2 H par rangée de capteur							
dynam. 1)	ve	m	angle d'install. max. 45°							
kN/m²	m/s	km/h	Jusqu'à 4 capteurs	Jusqu'à 6 capteurs	Jusqu'à 8 capteurs					
			oids supplémentaire	res de 50 kg 2)						
0,9	38,7	139	3	3	3					
1,0	40,8	147	3	4	4					
1,1	42,8	154	4	4	4					
1,2	44,7	161	4	5	5					
1,3	46,5	168	5	5	5					
1,4	48,3	174	Dimensionnement détaillé par un spécialiste en							
		statique nécessaire								
1,5	50,0 180 Dimensionnement détaillé par un spécial									
			statique nécessaire							

¹⁾ Valeur de pression dynamique selon la carte des vents SIA 261

Niveau de sécurité 2

- Augmentation du poids propre par le nombre de poids supplémentaires
- Fixation supplémentaire des rangées entre elles
- Entretoisement (par ex. rail perforé)
- Recommandé à une hauteur de bâtiment de plus de 10 m à partir du terrain
- L'entretoise doit être installée au bord du champ de capteurs. A partir de 4 capteurs par rangée, une entretoise supplémentaire doit être installée au centre du champ

Niveau de sécurité 3

- Augmentation du poids propre par le nombre de poids supplémentaires
- Fixation supplémentaire des rangées entre elles
- Fixation des rangées à un point de fixation stable (par l'installateur)
- Entretoisement par l'installateur (par ex. rail perforé)
- Recommandé à partir d'une pression dynamique de 1,3 kN/m² ou sans bordure de toit (< 20 cm)

²⁾ par socle en béton

Sous-structure du toit/statique

Avant de positionner les poids sur le toit, il convient de contrôler la statique du toit. A cet effet, faire intervenir le spécialiste de la statique/ingénieur de la construction compétent. Il convient également de contrôler la résistance à la compression de la sous-structure. Toutes les isolations ne sont pas appropriées à une charge ponctuelle élevée. Les charges autorisées du toit doivent être respectées en cas de livraison par palette sur le toit. Le tableau suivant illustre le poids pour chaque socle en béton selon le nombre de poids supplémentaires

Tableau 4 se réfère

- au poids total du socle en béton
- aux poids supplémentaires et
- au capteur, divisé par le nombre de capteurs monté dans une rangée.

Poids

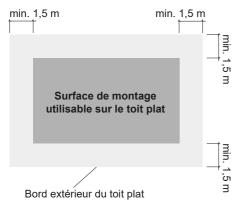
Socle en béton: 92 kg Poids supplémentaire: 50 kg

Capteur: 43 kg

Surface d'appui du socle en béton: 0,2 m²

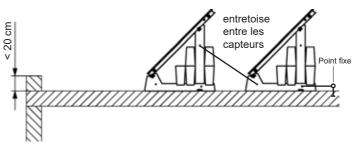
Pour chaque rangée, le nombre suivant de socles en béton sont inclus dans le calcul: Nombre de capteurs +1

Si la charge ponctuelle de la construction est trop élevée, le poids peut être réparti sur une plus grande surface en dessous du socle à l'aide d'une plaque de répartition de charge


Tableau 4

			Nomb	re de ca	pteurs/	rangee		
		Poids par capteur dans une rangée en kg						
	1	2	3	4	5	6	7	8
avec 3 poids supplémentaires	527	406	366	346	333	325	320	315
avec 4 poids supplémentaires	627	481	432	408	393	384	377	372
avec 5 poids supplémentaires	727	556	499	471	453	442	434	428
avec 6 poids supplémentaires	827	631	566	533	513	500	491	484
avec 7 poids supplémentaires	927	706	632	596	573	559	548	540

Zones en bordure de toit plat


Les capteurs ne doivent pas être montés en bordure du toit pour éviter des forces d'aspiration inadmissibles exercées par le vent. Il convient de respecter les normes correspondantes à ce sujet.

Pour le montage des capteurs solaires, il convient d'éviter dans tous les cas, comme surface de montage, les zones critiques dans la zone de bordure.

Installations à toiture plate sans bordure

Il faut faire très attention avec les installations possédant une bordure de toit plat plus petite ou moindre (hauteur inférieure à 20 cm). L'ensemble de la construction est, dans ce cas, exposé aux forces complètes du vent. C'est pourquoi nous recommandons le niveau de sécurité 3 (entretoiser les rangées et fixer à un point fixe stable).

Protection de la couche de toit

Le toit plat doit impérativement être protégé des dommages. Les dommages causés à la couverture sont complexes et très coûteux. Le toit doit ainsi impérativement être soigneusement nettoyé avant le montage. Les objets particulièrement pointus tels que les cailloux, débris et outils doivent être éliminés. Le revêtement de gravier doit être complètement retiré dans la zone du socle en béton. Sous le socle, la couverture de toit doit être protégée à l'aide d'une plaque isolante (p. ex. tapis en caoutchouc mousse).

■ Planification
Dimensions de tube recommandées (cuivre ou acier inoxydable)
pour mélange eau - monopropylène glycol 40/60 % et 50 °C

	t volu- ique		N 10 x 1 mm		N 12 1 mm		DN 15 18 x 1 mm		DN 20 22 x 1 mm		DN 25 28 x 1,5 mm		DN 32 35 x 1,5 mm		N 40 1,5 mm
[l/h]	[l/min]	v [m/s]	Δp [mbar/m]	v [m/s]	∆p [mbar/m]	v [m/s]	Δp [mbar/m]	v [m/s]	Δp [mbar/m]	v [m/s]	Δp [mbar/m]	v [m/s]	Δp [mbar/m]	v [m/s]	Δp [mbar/m]
125	2,08	0,44	3,10	0,26	1,10	0,17	0,50	0,11	0,20	0,07	0,10	0,04	0,00	0,03	0,00
150	2,50	0,53	6,70	0,31	1,30	0,21	0,60	0,13	0,20	0,08	0,10	0,05	0,00	0,03	0,00
175	2,92	0,62	8,70	0,37	1,50	0,24	0,70	0,15	0,30	0,10	0,10	0,06	0,00	0,04	0,00
200	3,33	0,71	10,90	0,42	3,20	0,28	0,80	0,18	0,30	0,11	0,10	0,07	0,00	0,05	0,00
250	4,17	0,88	15,90	0,52	4,60	0,35	1,70	0,22	0,40	0,14	0,20	0,09	0,10	0,06	0,00
300	5,00	1,06	21,70	0,63	6,30	0,41	2,40	0,27	0,80	0,17	0,20	0,10	0,10	0,07	0,00
350	5,83	1,24	28,30	0,73	8,20	0,48	3,10	0,31	1,10	0,20	0,20	0,12	0,10	0,08	0,00
400	6,67	1,41	35,60	0,84	10,30	0,55	3,90	0,35	1,40	0,23	0,50	0,14	0,10	0,09	0,00
450	7,50	1,59	43,60	0,94	12,60	0,62	4,70	0,40	1,70	0,25	0,60	0,16	0,10	0,10	0,00
500	8,33	1,77	52,40	1,05	15,10	0,69	5,70	0,44	2,00	0,28	0,70	0,17	0,20	0,12	0,10
600	10,00	2,12	71,90	1,26	20,70	0,83	7,80	0,53	2,70	0,34	0,90	0,21	0,30	0,14	0,10
700	11,67	2,48	94,10	1,46	27,10	0,97	10,10	0,62	3,50	0,40	1,20	0,24	0,40	0,16	0,20
800	13,33	2,83	118,90	1,67	34,10	1,11	12,70	0,71	4,40	0,45	1,50	0,28	0,50	0,19	0,20
900	15,00	3,18	146,20	1,88	41,90	1,24	15,60	0,80	5,40	0,51	1,90	0,31	0,60	0,21	0,20
1000	16,67	3,54	175,90	2,09	50,40	1,38	18,80	0,88	6,50	0,57	2,30	0,35	0,70	0,23	0,30
1200	20,00	4,24	242,60	2,51	69,30	1,66	25,80	1,06	8,90	0,68	3,10	0,41	1,00	0,28	0,40
1500	25,00	5,31	360,20	3,14	102,70	2,07	38,10	1,33	13,20	0,85	4,60	0,52	1,40	0,35	0,60
1750	29,17	6,19	473,70	3,66	134,80	2,42	50,00	1,55	17,30	0,99	6,00	0,60	1,90	0,41	0,70
2000	33,33	7,07	601,00	4,19	170,70	2,76	63,30	1,77	21,80	1,13	7,60	0,69	2,30	0,47	0,90
2250	37,50	7,96	741,90	4,71	210,40	3,11	77,90	1,99	26,90	1,27	9,30	0,78	2,90	0,52	1,10
2500	41,67	8,84	896,00	5,23	253,70	3,45	93,90	2,21	32,30	1,41	11,20	0,86	3,50	0,58	1,40
2750	45,83	9,73	1063,00	5,76	300,70	3,80	111,10	2,43	38,20	1,56	13,20	0,95	4,10	0,64	4,10
3000	50,00	10,61	1243,00	6,28	351,20	4,14	129,70	2,65	44,60	1,70	15,40	1,04	4,70	0,70	1,90

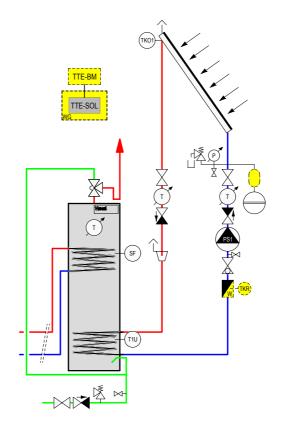
v = Vitesse d'écoulement [m/s]

 Δp = Perte de charge [mbar/m]

= Dimension de tube recommandée

Pour le matériau brut, nous recommandons d'utiliser des tubes en cuivre ou en acier inoxydable du commerce, isolation thermique - selon position de montage:

- Pour le domaine extérieur, résistant au rayonnement UV et solide (température, petits animaux)
- Pour le domaine intérieur, équiper en protection contre l'incendie et/ou contre les contacts, selon les exigences.


Le tableau n'est pas valable pour les tubes ondulés.

Pour plus d'informations, voir conduite solaire SL.

■ Exemples d'utilisation Système solaire pour eau chaude avec

- préparateur d'ECS
- groupe d'armatures de retour solaire Schéma hydraulique BAAE020

Remarques importantes:

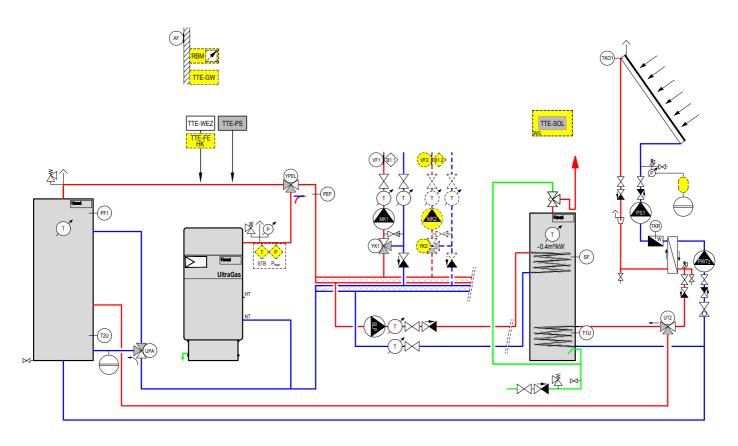
- Nos exemples d'utilisation sont des schémas de principe ne contenant pas toutes les informations nécessaires pour l'installation. L'installation doit se conformer aux conditions, dimensions et prescriptions applicables localement.
- Pour le chauffage par le sol, il s'agit de prévoir un surveillant de température de
- Les organes d'arrêt des dispositifs de sécurité (vase d'expansion, soupape de sécurité, etc.) doivent être protégés contre toute fermeture accidentelle!
- Prévoir des sacs pour empêcher toute circulation monotube par inertie!

Module solaire TopTronic® E Sonde de préparateur d'ECS TTE-SOL SF TKO1 Sonde de capteur 1 T1U Sonde de l'accumulateur PS1 Pompe du circuit solaire

En option TTE-BM

Module de commande TopTronic® E WG Boîtier mural

TKR Sonde de retour


■ Exemples d'utilisation

Chauffage des pièces en partie solaire et gaz

Système solaire pour chauffage et eau chaude avec

- chauffage en partie solaire des pièces d'habitation
- UltraGas®
- intégration tampon vanne mélangeuse de décharge
- accumulateur-tampon d'énergie
- préparateur d'ECS
- 1-2 circuits mélangeurs

Schéma hydraulique HCE010

Remarques importantes:

- Nos exemples d'utilisation sont des schémas de principe ne contenant pas toutes les informations nécessaires pour l'installation. L'installation doit se conformer aux conditions, dimensions et prescriptions applicables localement.
- Pour le chauffage par le sol, il s'agit de prévoir un surveillant de température de
- Les organes d'arrêt des dispositifs de sécurité (vase d'expansion, soupape de sécurité, etc.) doivent être protégés contre toute fermeture accidentelle!
- Prévoir des sacs pour empêcher toute circulation monotube par inertie!

TTE-WEZ	Module de base	TopTronic® I	E générateur de	chaleur (intégré)

TTE-PS Module tampon TopTronic® E TTE-SOL Module solaire TopTronic® E VF1 Sonde de température de départ 1

Surveillant de température de départ (si nécessaire) B1.1

Pompe circuit mélangeur 1 MK1 YK1 Servomoteur mélangeur 1 AF Sonde extérieure SF Sonde de préparateur d'ECS TKO1 Sonde de capteur 1 T1U Sonde de l'accumulateur PF1 Sonde de tampon 1

Servomoteur décharge au démarrage (commande unifilaire) Pompe de charge préparateur d'ECS **UPA**

SLP

PS1 Pompe du circuit solaire TKR Sonde de retour

PWTz Pompe échangeur de chaleur centralisé Sonde de décharge de l'accumulateur Servomoteur mélangeur de décharge **PEF YPEL** Organe d'inversion accumulateur U12

En option

RBM Module de commande TopTronic® E d'ambiance

TTE-GW TopTronic® E Gateway

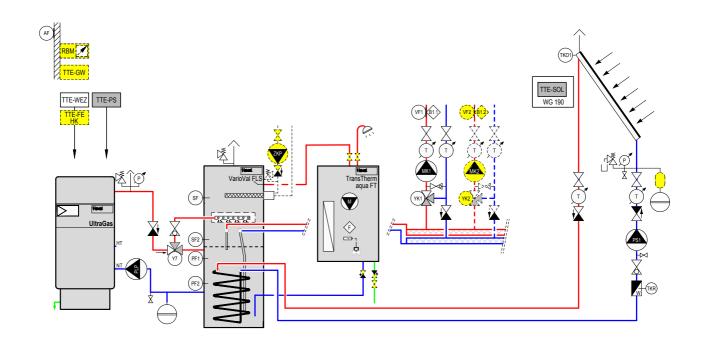
WG Boîtier mural

TTE-FE HK Extension de module TopTronic® E circuit de chauffage

VF2 Sonde de température de départ 2

B1.2 Surveillant de température de départ (si nécessaire)

MK2 Pompe circuit mélangeur 2 YK2 Servomoteur mélangeur 2


■ Exemples d'utilisation

Chauffage des pièces en partie solaire et gaz

Système solaire pour chauffage et eau chaude avec

- chauffage en partie solaire des pièces d'habitation
- UltraGas®
- intégration tampon vanne mélangeuse de décharge
- VarioVal FLS
- 1-2 circuits mélangeurs
- capteurs solaires
- TransTherm aqua FT

Schéma hydraulique HCE110/BABE100

Remarques importantes:

- Nos exemples d'utilisation sont des schémas de principe ne contenant pas toutes les informations nécessaires pour l'installation. L'installation doit se conformer aux conditions, dimensions et prescriptions applicables localement.
- Pour le chauffage par le sol, il s'agit de prévoir un surveillant de température de départ.
- Les organes d'arrêt des dispositifs de sécurité (vase d'expansion, soupape de sécurité, etc.) doivent être protégés contre toute fermeture accidentelle!
- Prévoir des sacs pour empêcher toute circulation monotube par inertie!

(intégré)

TTE-PS Module tampon TopTronic® E
TTE-SOL Module solaire TopTronic® E
VF1 Sonde de température de départ 1

B1.1 Surveillant de température de départ (si nécessaire)

MK1 Pompe circuit mélangeur 1 YK1 Servomoteur mélangeur 1 AF Sonde extérieure

SF Sonde de préparateur d'ECS SF2 Sonde de préparateur d'ECS 2

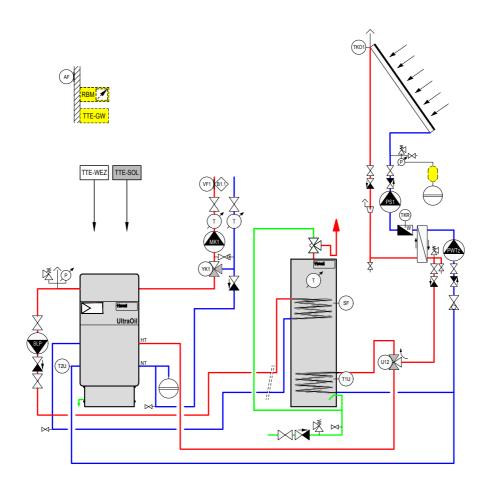
TKO1 Sonde de capteur 1
Y7 Vanne d'inversion
PF1 Sonde de tampon 1
PF2 Sonde de tampon 2
TKR Sonde de retour
PS1 Pompe du circuit sola

PS1 Pompe du circuit solaire
PLP Pompe de charge tampon
ZKP Pompe de circulation

En option

RBM Module de commande TopTronic® E d'ambiance

TTE-GW TopTronic® E Gateway WG Boîtier mural TKR Sonde de retour


TTE-FE HK Extension de module TopTronic® E circuit de chauf-

fage

VF2 Sonde de température de départ 2

B1.2 Surveillant de température de départ (si nécessaire)

MK2 Pompe circuit mélangeur 2 YK2 Servomoteur mélangeur 2 **■** Exemples d'utilisation Chauffage des pièces en partie solaire et gaz Schéma hydraulique BEBE060

Remarques importantes:

- Nos exemples d'utilisation sont des schémas de principe ne contenant pas toutes les informations nécessaires pour l'installation. L'installation doit se conformer aux conditions, dimensions et prescriptions applicables localement.
- Pour le chauffage par le sol, il s'agit de prévoir un surveillant de température de départ.
- Les organes d'arrêt des dispositifs de sécurité (vase d'expansion, soupape de sécurité, etc.) doivent être protégés contre toute fermeture accidentelle!
- Prévoir des sacs pour empêcher toute circulation monotube par inertie!

TTE-WEZ	Module de base TopTronic® E générateur de chaleur
	(intégré)
TTE-SOL	Module solaire TopTronic® E
\/F1	Sonde de température de départ 1

B1.1 Surveillant de température de départ (si nécessaire) Pompe circuit mélangeur 1 MK1

YK1 Servomoteur mélangeur 1 Sonde extérieure AF Sonde de préparateur d'ECS Sonde de capteur 1 SF TKO1

Sonde de l'accumulateur 1 T₁U T2U Sonde de l'accumulateur 2 SLP Pompe de charge préparateur d'ECS

PS1 Pompe du circuit solaire

TKR Sonde de retour

PWTz Pompe échangeur de chaleur centralisé U12 Organe d'inversion accumulateur

En option

RBM Module de commande TopTronic® E d'ambiance

TTE-GW TopTronic® E Gateway